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Abstract. The quantum Hall effect (QHE) is shown to be a natural property in high magnetic
fields of any system possessing both quasi-two-dimensional and quasi-one-dimensional Fermi-
surface components. Such Fermi surfaces are known to occur in some organic charge-
transfer salts (e.g.α-(BEDT-TTF)2MHg(SCN)4 with M = K, Tl, NH4). Whilst the QHE in
two-dimensional semiconductor systems such as heterostructures and MOSFETs relies on the
existence of localized states at the edges of the Landau levels, in organic metals the quasi-
one-dimensional portion of the Fermi surface is shown to provide the necessary reservoir for
pinning the chemical potential between the completely filled and empty Landau levels of the
quasi-two-dimensional Fermi-surface section.

The quantum Hall effect has usually been regarded as a property of two-dimensional
semiconductor systems such as GaAs–(Ga, Al)As heterostructures or Si MOSFETs [1–
3]. However, recent magnetization measurements on the charge-transfer saltsα-(BEDT-
TTF)2MHg(SCN)4 (M = K, Tl) [4, 5] have revealed sharp features apparently due to
persistent eddy currents; it was suggested [4] that these were associated with the deep minima
in the resistivity componentρxx which accompany the quantum Hall-effect plateaux [1, 2]
in ρxy . This assertion, if correct, would mark the first observation of the conventional
quantum Hall effect in a bulk material [3]. In this letter we report calculations which
show that the quantum Hall effect should indeed be a natural property of materials such as
α-(BEDT-TTF)2MHg(SCN)4 (M = K, Tl).

There are two prerequisites for the observation of the quantum Hall effect. Firstly,
the energy separation of the Landau levels should be greater than their width; it is this
requirement which rules out the quantum Hall effect in conventional three-dimensional
metallic systems because the bandwidthW in the direction in which the field is applied
is invariably much greater than the Landau-level separation ¯hωc. Secondly, the chemical
potential µ should be situated between completely filled and empty Landau levels over
an extended region of magnetic fieldB to give rise to plateaux inρxy ; this is realized in
two-dimensional semiconductor systems because of the localized nature of the states in the
tails of the Landau levels [2].
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Figure 1. The calculated Fermi surface for theα-phase BEDT-TTF salts, consisting of
both quasi-one-dimensional and quasi-two-dimensional sections (after reference [8]; see also
reference [9]).

Theα-(BEDT-TTF)2MHg(XCN)4 (M = K, Tl or NH4 and X= S or Se) charge-transfer
salts seem to fulfil the first prerequisite admirably [6, 7], often possessing quasiparticle
lifetimes τ and bandwidths in the direction perpendicular to the highly conducting planes
such thatωcτ ∼ 3–10 and ¯hωc � W at B ∼ 30 T. However, the situation is complicated
in the α-phase salts by the presence of a quasi-one-dimensional component of the Fermi
surface [8, 9] in addition to the closed quasi-two-dimensional cylinder which gives rise to
the quantized orbital motion (see figure 1). The open Fermi-surface sheets cannot undergo
Landau quantization in a magnetic field; hence their contribution to the density of states
(DOS) is a continuous function of energyE. Such quasi-one-dimensional states do not
occur in semiconductor heterostructures or MOSFETs [2] and so their possible involvement
in the quantum Hall effect has not thus far been considered.

Recent numerical calculations [6] have successfully simulated high-field de Haas–van
Alphen [12] and Shubnikov–de Haas [13] oscillations in theα-phase BEDT-TTF salts;
the DOS used in the calculations contained contributions from both quasi-one-dimensional
(constant DOS) and quasi-two-dimensional (Lorentzian Landau-level DOS) Fermi-surface
sections. It was found at high magnetic fields thatµ remained within the quasi-one-
dimensional component of the DOS (i.e.betweenLandau levels) over relatively extended
regions ofB (see especially figure 1 of reference [6]). Thus it does appear that both
prerequisites for the quantum Hall effect can be fulfilled in theα-phase BEDT-TTF salts.
Nevertheless, as the quantum Hall effect is usually observed in measurements of the
resistivity, it might at first be thought that contributions to the electrical conductivity due
to the quasi-one-dimensional parts of the Fermi surface would in some way act to ‘short
out’ or obscure effects due to the quantized conductivity of the two-dimensional cylinders;
as will be demonstrated below, this turns out not to be the case.

We shall first consider the effect of ideally one-dimensional Fermi-surface sheets; in this
case, the corresponding conductivity componentsσxy,1D andσyy,1D of the one-dimensional
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states are zero, whilst theσxx,1D contribution remains finite. In the situation whereµ
is located directly between adjacent Landau levels, the contributions from the quasi-two-
dimensional Fermi-surface sections will beσxx,2D = σyy,2D = 0 andσxy,2D = eN2D/B (here
N2D is the areal density of the quasi-two-dimensional carriers), and it is straightforward to
show that ∣∣∣∣ ρxx ρxy

ρyx ρyy

∣∣∣∣ =
∣∣∣∣ 0 RH

−RH R2
Hσxx,1D

∣∣∣∣ (1)

with eN2D/B = 1/RH. Whilst the diagonal elements are clearly anisotropic, the off-diagonal
Hall components have the conventional form expected for a quasi-two-dimensional Fermi-
surface pocket [2]. We now consider an extended region ofB over whichµ resides in the
quasi-one-dimensional DOS (see figure 1 of reference [6]); this has the effect of keeping
the Landau levels below (above)µ completely filled (empty). Throughout this interval,
the Landau levels have degeneracyd = 1/(2πλ2), whereλ = (h̄/(eB))1/2; hence from
summing over all occupied Landau levels, the total number of quasi-two-dimensional states
is N2D = ieB/h, i being the index of the uppermost filled Landau level. Substituting this
into the off-diagonal elements of equation (1) produces

ρxy = −ρyx = h

ie2
(2)

i.e. the quantum Hall effect.
The finite warping of the quasi-one-dimensional sections of Fermi surface in theα-

phase BEDT-TTF salts implies a departure from this ideal situation. However, it will be
shown below that the quantum Hall effect is still tenable provided that the conductivity
of the quasi-one-dimensional Fermi-surface section is sufficiently anisotropic. Quasi-one-
dimensional sections of Fermi surface are habitually modelled by the equation [14]

E = hvF(kx − kF) − 2tc cos(cky) (3)

where vF is the Fermi velocity and the warping in the direction perpendicular to the
conducting planes and higher-harmonic contributions to the warping in the planes are
ignored. The wavevectorskx, ky and kz are associated with the lattice parametersa, c

and b respectively [8], and the magnetic field is chosen to be in thez-direction; tc is the
transfer integral which describes the warping of the quasi-one-dimensional Fermi-surface
component within the conducting planes. The classical conductivity tensor for a quasi-one-
dimensional Fermi surface is known to take the form [14, 15]∣∣∣∣ σxx,1D σxy,1D

σyx,1D σyy,1D

∣∣∣∣ = σ1D,0

∣∣∣∣ 1 −γan/(ω1Dτ)

γan/(ω1Dτ) γan/(1 + ω2
1Dτ 2)

∣∣∣∣ (4)

where

γan = 2c2t2
c

h̄2v2
F

(5)

is the zero-field conductivity anisotropy ratio [14],σ1D,0 = e2N1Dτ/m∗
1D is the zero-field

Drude-like conductivity, andω1D = eB/m∗
1D (with m∗

1D = h̄/(cvF)) is the frequency at
which the quasiparticles sweep across the quasi-one-dimensional Fermi surface in a magnetic
field. Consequently, the extent to which the warping affects the quantum Hall effect depends
on the magnitude ofγan.

From equation (3) it follows thattc is related to the widthδka (figure 1) of the warping
of the quasi-one-dimensional Fermi surface by the relationshipδka = 4tc/(h̄vF). Combining
this with equation (5), we obtainγan = π2(δka)

2/(2k2
c), which is independent of the sizes

of tc and vF. This result is rather convenient, since it makes the anisotropy condition



L50 Letter to the Editor

independent of band renormalization effects. For example, analysis of the band-structure
calculations [8] represented in figure 1 yieldstc ∼ 8 meV andvF ∼ 2.5× 105 m s−1, values
which are somewhat higher than those which might be expected from simple fermiological
considerations [17]; nevertheless, the calculated Fermi-surface shape [8, 9] can still be used
to give γan = 10−2–10−3.

In principle, it would be possible to infer a value ofγan using angle-dependent
magnetoresistance oscillation (AMRO) measurements. However, the warping of the quasi-
one-dimensional sheets in theα-phase BEDT-TTF salts is thought to be too weak to produce
AMROs [18], supporting the very high degree of anisotropy that we have deduced using
the calculated Fermi surface.

In order to use this estimate of the anisotropy to assess the feasibility of the quantum
Hall effect in a system consisting of both quasi-two-dimensional and quasi-one-dimensional
carriers we have performed numerical calculations of the magnetoresistance at high magnetic
fields ∼30–120 T. As a first approximation we assume that the conductivity of the quasi-
one-dimensional Fermi surface behaves in the classical manner described by equation (4).
In contrast, the quasi-two-dimensional carriers will depart significantly from the classical
situation in the limitωcτ ∼ 3–10, valid for such high fields [6, 13]. Indeed, a number
of different measurements on BEDT-TTF salts [6] have already established that the
Lifshitz–Kosevich (LK) formalism used to describe the quantum oscillatory behaviour
of properties such as magnetization and resistivity at low magnetic fields∼10 T is no
longer appropriate at the high fields used in e.g. references [4] and [13]. For practical
reasons, the high-field magnetoresistance experiments which have demonstrated the failure
of the LK approach [6, 13] have so far been confined to measurements of the resistivity
componentρzz (i.e. that measured in the longitudinalz-direction); no direct measurements
of the transverse resistivity componentsρxx and ρxy have thus far been made at high
magnetic fields. However, in view of the failure of the LK formalism to describe the high-
field oscillations inρzz [6, 13] it is expected that the oscillations inρxx will also depart
from LK-like behaviour at high fields. We therefore calculateρxx and ρxy in the high-
field limit numerically, using an approach somewhat analogous to that described forρzz in
reference [6].

Following Ando and Uemura [19] (an approach based on the Kubo formalism), the
diagonal components of the conductivity due to the quasi-two-dimensional Fermi-surface
pockets in a magnetic field are given by

σxx,2D = σyy,2D = e2

π2h̄

∫ (
− ∂f

∂E

) ∑
i

(
i − 1

2

)
(Im Gi)

2

(ReGi)2 + (Im Gi)2
dE (6)

Here, f is the Fermi–Dirac distribution function andGi is the single-particle Green’s
function, related to the broadened DOS of theith Landau level via

Di = 1

2πλ2

(
− 1

π
Im Gi

)
.

ThereforeDi takes different functional forms depending on whether Lorentzian or Gaussian
broadening of the Landau levels is assumed. Equation (6) represents the conductivity for
a single layer; however, asW � h̄ωc, the three-dimensional conductivity can be obtained
by scaling with the lattice parameterb. To a first approximation [19], the off-diagonal Hall
component can be obtained via the integration

σxy,2D = −σyx,2D = − e

B

∫
f

∑
i

Di dE. (7)
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Figure 2. Calculated values ofρxx (top section)ρxy (centre section) andρyy (bottom section)
assuming Drude-like quasi-one-dimensional conductivity (dashed line) and localized quasi-one-
dimensional states (solid line). For other parameters, see the text. Note that quantum Hall
plateaux are observed inρxy in both cases.

The chemical potentialµ is determined by keeping the integral

N1D + N2D =
∫ (

D1D +
∑

i

Di

)
f dE (8)

over the total number of states constant [6], whereD1D is the density of quasi-one-
dimensional states. As a consequence, the carriers flow continually back and forth between
the quasi-two-dimensional and quasi-one-dimensional Fermi-surface sections, the latter
acting as a charge reservoir (see figure 1 of reference [6]). Note that the field-averaged
DOS of the quasi-one-dimensional Fermi-surface sectionD1D has recently been estimated
to be 0.4 times that of the quasi-two-dimensional Fermi-surface section,D2D, in theα-phase
BEDT-TTF salts [6, 20].

Figure 2 (dashed lines) showsρxx, ρyy and ρxy calculated using the above method
with the parametersm∗ = 2.5me, F = 670 T andτ−1 = 0.2 × 1012 s−1, appropriate for
α-(BEDT-TTF)2MHg(SCN)4 (M = K, Tl) at high magnetic fields [6]; Lorentzian broaden-
ing of the Landau levels has been assumed [21]. There are two important contrasts with
the familiar magnetoresistance data from the two-dimensional semiconductor systems [2].
Firstly, the oscillations inρxx and ρyy differ in phase, amplitude and general appearance
(compare the upper and lower sections of figure 2); in the semiconductor systems,ρxx and
ρyy usually behave identically [22]. Secondly the Hall resistance,ρxy (see figure 2, centre
section), exhibits oscillatory behaviour between the plateaux caused by the influence of
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σxx,1D within the conductivity tensor. In spite of these oscillations, quantum Hall plateaux
occur whenµ is situated directly between Landau levels.

The flatness of the quantum Hall plateaux in figure 2 depends on the magnitude of the
residual conductivityσxx,2D = δσ of the quasi-two-dimensional Fermi-surface section when
µ is situated in the gap in the DOS. It can be shown that in the limitE′ > h̄τ−1, whereE′ is
the energy relative to the centre of the Landau level (i.e. the energy away from the centre of
the Landau level), the real part of the Green’s function becomes ReGi ≈ 1/E′ > Im Gi [19].
This result is essentially independent of the type of the Landau-level broadening. Hence it
can be shown that

δσ ∼ ie2

h̄

ωcτ

8
e−πωcτ/8 (9)

for Gaussian broadening of the Landau levels or

δσ ∼ ie2

h̄

1

(πωcτ)2
(10)

for Lorentzian broadening. In both cases, the residual conductivity is very much less than
the Hall conductivity. Hence, assuming thatδσ is small, the magnetoresistivity in the
vicinity of the Hall plateau is∣∣∣∣ ρxx ρxy

ρyx ρyy

∣∣∣∣ ≈
∣∣∣∣ R2

Hδσ RH

−RH R2
H(σ1D,0 + δσ )

∣∣∣∣ (11)

whereRH is nowB/(e(N2D + δN)) and whereδN = γanN1D. The most important effect of
the anisotropy of the quasi-one-dimensional Fermi-surface component is therefore that of
increasing the value of the Hall resistance at the plateau by an amount proportional toγan

(see equation (4)). Since the quasi-one-dimensional Fermi surface is extremely anisotropic
(see the above estimates ofγan), this additional component is vanishingly small in figure 2.

In the preceding text we have shown that the plateaux inρxy which characterize the
quantum Hall effect are a natural phenomenon in a system containing both quasi-two-
dimensional and quasi-one-dimensional carriers, without the need for localized states. In this
sense, the dashed line of figure 2 represents the most unfavourable case; i.e. the conductivity
of the quasi-one-dimensional states remains Drude-like even at high magnetic fields. If
some form of localization affects the quasi-one-dimensional carriers at high magnetic fields,
then there is an increased probability of observing resistivity behaviour more like that
seen in the two-dimensional semiconductor systems. It is known that the conductivity
of quasi-one-dimensional Fermi-surface sheets becomes increasingly one-dimensional asB

increases [14]. At a certain threshold fieldBc determined by the condition ¯hωc > 2tc, the
quasi-one-dimensional carriers become effectively confined to a single chain of BEDT-TTF
molecules [14, 16]. According to the estimates based on the band-structure calculations
described above, we should expect this one-dimensionalization to occur at∼10–100 T.
Under such 1D confinement, the quasi-one-dimensional carriers become highly susceptible
to localization effects at low temperatures [16]. A detailed calculation of the electron
transfer between BEDT-TTF molecules at high magnetic fields is beyond the scope of the
present letter. Nevertheless for the purpose of making a comparison, we have additionally
calculated the magnetoresistance for the case where the quasi-one-dimensional states are
completely localized (figure 2, solid lines). When this localization occurs, the quantum
Hall effect, ρxx and ρyy resemble those observed in the two-dimensional semiconductor
systems [2]. Realistically, we might expect the real magnetoresistance to lie somewhere
between these two extreme limits.
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Returning to the calculations made for the case where the quasi-one-dimensional states
are assumed to remain Drude-like (figure 2, dashed lines), it is clear thatρyy exhibits
prominent peaks when the minima inρxx occur. These flat-bottomed minima inρxx are
the so-called ‘ideal conducting phases’ (i.e.ρxx tends to zero, resulting, under certain
circumstances, in the flow of quasi-persistent currents) [21]. Clearly if this were to be the
case then a quasi-persistent current of the kind observed in two-dimensional semiconductor
systems in such resistivity minima (see reference [21] and references therein) could only
flow in the x-direction. However, the recent experimental observation of quasi-persistent
circulating currents atB ∼ 30 T in α-(BEDT-TTF)2TlHg(SCN)4 [4] and α-(BEDT-
TTF)2KHg(SCN)4 [5] suggests thatρyy must also be very small in theρxx-minima.
Localization effects would greatly reduce the size of the maxima inρyy , and in the case of
strong localization (figure 2, lowest section) would cause the maxima to invert and become
minima. The observation of quasi-persistent, circulating eddy currents [4, 5] therefore
strongly suggests that localization of the quasi-one-dimensional states occurs at magnetic
fields ∼30 T in at least some of theα-phase BEDT-TTF salts.

In this letter we have shown that the combined existence of a weakly warped quasi-
one-dimensional Fermi surface and a quasi-two-dimensional Fermi surface can give rise
to the quantum Hall effect in high magnetic fields; the existence of localized states is not
necessary. However, a comparison of the calculations in this letter with recent experimental
data suggests that field-induced localization of quasi-one-dimensional carriers may in fact
occur in some of theα-phase BEDT-TTF salts.

This work was supported by the Belgian National Science Foundation, the EPSRC (UK)
and the Royal Society (UK). We should like to thank Markus Honold, Andrew House,
Dr William Hayes, Dr Stephen Blundell and Professor David Shoenberg for very helpful
discussions.
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